/* This is an independent implementation of the encryption algorithm: */ /* */ /* E2 by Nippon Telegraph and Telephone (NTT) Japan */ /* */ /* which is a candidate algorithm in the Advanced Encryption Standard */ /* programme of the US National Institute of Standards and Technology. */ /* */ /* Copyright in this implementation is held by Dr B R Gladman but I */ /* hereby give permission for its free direct or derivative use subject */ /* to acknowledgment of its origin and compliance with any conditions */ /* that the originators of the algorithm place on its exploitation. */ /* */ /* Dr Brian Gladman 14th January 1999 */ /* */ /* In accordance with the wishes of NTT this implementation is made */ /* available for academic and study purposes only. I gratefully */ /* acknowledge the contributions made by Kazumaro Aoki of NTT Japan */ /* for ways to increase the speed of this implementation. */ /* Timing data for E2 (e28.c) Core timing without I/O endian conversion: 128 bit key: Key Setup: 9473 cycles Encrypt: 687 cycles = 37.3 mbits/sec Decrypt: 691 cycles = 37.0 mbits/sec Mean: 689 cycles = 37.2 mbits/sec 192 bit key: Key Setup: 9540 cycles Encrypt: 696 cycles = 36.8 mbits/sec Decrypt: 693 cycles = 36.9 mbits/sec Mean: 695 cycles = 36.9 mbits/sec 256 bit key: Key Setup: 9913 cycles Encrypt: 691 cycles = 37.0 mbits/sec Decrypt: 706 cycles = 36.3 mbits/sec Mean: 699 cycles = 36.6 mbits/sec Full timing with I/O endian conversion: 128 bit key: Key Setup: 9598 cycles Encrypt: 730 cycles = 35.1 mbits/sec Decrypt: 723 cycles = 35.4 mbits/sec Mean: 727 cycles = 35.2 mbits/sec 192 bit key: Key Setup: 9393 cycles Encrypt: 730 cycles = 35.1 mbits/sec Decrypt: 720 cycles = 35.6 mbits/sec Mean: 725 cycles = 35.3 mbits/sec 256 bit key: Key Setup: 9720 cycles Encrypt: 727 cycles = 35.2 mbits/sec Decrypt: 721 cycles = 35.5 mbits/sec Mean: 724 cycles = 35.4 mbits/sec */ #ifndef CORE_TIME #define BYTE_SWAP #endif #include "../std_defs.h" static char *alg_name[] = { "e2", "e2.c", "e2" }; char **cipher_name() { return alg_name; }; u1byte s_box[] = { 0xe1, 0x42, 0x3e, 0x81, 0x4e, 0x17, 0x9e, 0xfd, 0xb4, 0x3f, 0x2c, 0xda, 0x31, 0x1e, 0xe0, 0x41, 0xcc, 0xf3, 0x82, 0x7d, 0x7c, 0x12, 0x8e, 0xbb, 0xe4, 0x58, 0x15, 0xd5, 0x6f, 0xe9, 0x4c, 0x4b, 0x35, 0x7b, 0x5a, 0x9a, 0x90, 0x45, 0xbc, 0xf8, 0x79, 0xd6, 0x1b, 0x88, 0x02, 0xab, 0xcf, 0x64, 0x09, 0x0c, 0xf0, 0x01, 0xa4, 0xb0, 0xf6, 0x93, 0x43, 0x63, 0x86, 0xdc, 0x11, 0xa5, 0x83, 0x8b, 0xc9, 0xd0, 0x19, 0x95, 0x6a, 0xa1, 0x5c, 0x24, 0x6e, 0x50, 0x21, 0x80, 0x2f, 0xe7, 0x53, 0x0f, 0x91, 0x22, 0x04, 0xed, 0xa6, 0x48, 0x49, 0x67, 0xec, 0xf7, 0xc0, 0x39, 0xce, 0xf2, 0x2d, 0xbe, 0x5d, 0x1c, 0xe3, 0x87, 0x07, 0x0d, 0x7a, 0xf4, 0xfb, 0x32, 0xf5, 0x8c, 0xdb, 0x8f, 0x25, 0x96, 0xa8, 0xea, 0xcd, 0x33, 0x65, 0x54, 0x06, 0x8d, 0x89, 0x0a, 0x5e, 0xd9, 0x16, 0x0e, 0x71, 0x6c, 0x0b, 0xff, 0x60, 0xd2, 0x2e, 0xd3, 0xc8, 0x55, 0xc2, 0x23, 0xb7, 0x74, 0xe2, 0x9b, 0xdf, 0x77, 0x2b, 0xb9, 0x3c, 0x62, 0x13, 0xe5, 0x94, 0x34, 0xb1, 0x27, 0x84, 0x9f, 0xd7, 0x51, 0x00, 0x61, 0xad, 0x85, 0x73, 0x03, 0x08, 0x40, 0xef, 0x68, 0xfe, 0x97, 0x1f, 0xde, 0xaf, 0x66, 0xe8, 0xb8, 0xae, 0xbd, 0xb3, 0xeb, 0xc6, 0x6b, 0x47, 0xa9, 0xd8, 0xa7, 0x72, 0xee, 0x1d, 0x7e, 0xaa, 0xb6, 0x75, 0xcb, 0xd4, 0x30, 0x69, 0x20, 0x7f, 0x37, 0x5b, 0x9d, 0x78, 0xa3, 0xf1, 0x76, 0xfa, 0x05, 0x3d, 0x3a, 0x44, 0x57, 0x3b, 0xca, 0xc7, 0x8a, 0x18, 0x46, 0x9c, 0xbf, 0xba, 0x38, 0x56, 0x1a, 0x92, 0x4d, 0x26, 0x29, 0xa2, 0x98, 0x10, 0x99, 0x70, 0xa0, 0xc5, 0x28, 0xc1, 0x6d, 0x14, 0xac, 0xf9, 0x5f, 0x4f, 0xc4, 0xc3, 0xd1, 0xfc, 0xdd, 0xb2, 0x59, 0xe6, 0xb5, 0x36, 0x52, 0x4a, 0x2a }; u4byte l_box[4][256]; u4byte lb_init = 0; #define v_0 0x67452301 #define v_1 0xefcdab89 /* s_fun(s_fun(s_fun(v))) */ #define k2_0 0x30d32e58 #define k2_1 0xb89e4984 /* s_fun(s_fun(s_fun(s_fun(v)))) */ #define k3_0 0x0957cfec #define k3_1 0xd800502e #define bp_fun(a,b,c,d,e,f,g,h) \ u = (e ^ g) & 0x00ffff00; \ v = (f ^ h) & 0x0000ffff; \ a = e ^ u; c = g ^ u; \ b = f ^ v; d = h ^ v #define ibp_fun(a,b,c,d,e,f,g,h) \ u = (e ^ g) & 0xff0000ff; \ v = (f ^ h) & 0xffff0000; \ a = e ^ u; c = g ^ u; \ b = f ^ v; d = h ^ v #define bp2_fun(x,y) \ w = (x ^ y) & 0x00ff00ff; \ x ^= w; y ^= w; \ #define s_fun(x,y) \ p = x; q = x >> 8; \ r = y; s = y >> 8; \ x = l_box[0][r & 255]; \ y = l_box[0][p & 255]; \ p >>= 16; r >>= 16; \ x |= l_box[1][q & 255]; \ y |= l_box[1][s & 255]; \ x |= l_box[2][r & 255]; \ y |= l_box[2][p & 255]; \ x |= l_box[3][p >> 8]; \ y |= l_box[3][r >> 8] #define sx_fun(x,y) \ p = x >> 8; \ q = x >> 16; \ x = l_box[0][x & 255]; \ x |= l_box[1][p & 255]; \ x |= l_box[2][q & 255]; \ x |= l_box[3][q >> 8]; \ p = y >> 8; \ q = y >> 16; \ y = l_box[0][y & 255]; \ y |= l_box[1][p & 255]; \ y |= l_box[2][q & 255]; \ y |= l_box[3][q >> 8] #define spx_fun(x,y) \ sx_fun(x,y); \ y ^= x; \ x ^= rotr(y, 16); \ y ^= rotr(x, 8); \ x ^= y #define sp_fun(x,y) \ s_fun(x,y); \ y ^= x; \ x ^= rotr(y, 16); \ y ^= rotr(x, 8); \ x ^= y #define sr_fun(x,y) \ p = x; q = x >> 8; \ r = y; s = y >> 8; \ y = l_box[1][p & 255]; \ x = l_box[1][r & 255]; \ p >>= 16; r >>= 16; \ x |= l_box[2][q & 255]; \ y |= l_box[2][s & 255]; \ y |= l_box[3][p & 255]; \ x |= l_box[3][r & 255]; \ x |= l_box[0][r >> 8]; \ y |= l_box[0][p >> 8] #define f_fun(a,b,c,d,k) \ u = c ^ *(k); v = d ^ *(k + 1); \ sp_fun(u, v); \ u ^= *(k + 2); v ^= *(k + 3); \ sr_fun(u, v); \ a ^= v; \ b ^= u #define byte_adr(x,n) *(((u1byte*)&x)+n) u4byte l_key[72]; u4byte mod_inv(u4byte x) { u4byte y1, y2, a, b, q; y1 = ~((-x) / x); y2 = 1; a = x; b = y1 * x; for(;;) { q = a / b; if((a -= q * b) == 0) return (x * y1 == 1 ? y1 : -y1); y2 -= q * y1; q = b / a; if((b -= q * a) == 0) return (x * y2 == 1 ? y2 : -y2); y1 -= q * y2; } }; void g_fun(u4byte y[8], u4byte l[8], u4byte v[2]) { u4byte p,q; spx_fun(y[0], y[1]); spx_fun(v[0], v[1]); l[0] = v[0] ^= y[0]; l[1] = v[1] ^= y[1]; spx_fun(y[2], y[3]); spx_fun(v[0], v[1]); l[2] = v[0] ^= y[2]; l[3] = v[1] ^= y[3]; spx_fun(y[4], y[5]); spx_fun(v[0], v[1]); l[4] = v[0] ^= y[4]; l[5] = v[1] ^= y[5]; spx_fun(y[6], y[7]); spx_fun(v[0], v[1]); l[6] = v[0] ^= y[6]; l[7] = v[1] ^= y[7]; }; u4byte *set_key(const u4byte in_key[], const u4byte key_len) { u4byte lk[8], v[2], lout[8]; u4byte i, j, k, w; if(!lb_init) { for(i = 0; i < 256; ++i) { l_box[0][i] = ((u4byte)(s_box[i])); l_box[1][i] = ((u4byte)(s_box[i])) << 8; l_box[2][i] = ((u4byte)(s_box[i])) << 16; l_box[3][i] = ((u4byte)(s_box[i])) << 24; } lb_init = 1; } v[0] = bswap(v_0); v[1] = bswap(v_1); lk[0] = io_swap(in_key[0]); lk[1] = io_swap(in_key[1]); lk[2] = io_swap(in_key[2]); lk[3] = io_swap(in_key[3]); lk[4] = io_swap(key_len > 128 ? in_key[4] : k2_0); lk[5] = io_swap(key_len > 128 ? in_key[5] : k2_1); lk[6] = io_swap(key_len > 192 ? in_key[6] : k3_0); lk[7] = io_swap(key_len > 192 ? in_key[7] : k3_1); g_fun(lk, lout, v); for(i = 0; i < 8; ++i) { g_fun(lk, lout, v); for(j = 0; j < 4; ++j) { // this is complex because of a byte swap in each 32 bit output word k = 2 * (48 - 16 * j + 2 * (i / 2) - i % 2); ((u1byte*)l_key)[k + 3] = ((u1byte*)lout)[j]; ((u1byte*)l_key)[k + 2] = ((u1byte*)lout)[j + 16]; ((u1byte*)l_key)[k + 19] = ((u1byte*)lout)[j + 8]; ((u1byte*)l_key)[k + 18] = ((u1byte*)lout)[j + 24]; ((u1byte*)l_key)[k + 131] = ((u1byte*)lout)[j + 4]; ((u1byte*)l_key)[k + 130] = ((u1byte*)lout)[j + 20]; ((u1byte*)l_key)[k + 147] = ((u1byte*)lout)[j + 12]; ((u1byte*)l_key)[k + 146] = ((u1byte*)lout)[j + 28]; } } for(i = 52; i < 60; ++i) { l_key[i] |= 1; l_key[i + 12] = mod_inv(l_key[i]); } for(i = 0; i < 48; i += 4) { bp2_fun(l_key[i], l_key[i + 1]); } return (u4byte*)&l_key; }; void encrypt(const u4byte in_blk[4], u4byte out_blk[4]) { u4byte a,b,c,d,p,q,r,s,u,v; p = io_swap(in_blk[0]); q = io_swap(in_blk[1]); r = io_swap(in_blk[2]); s = io_swap(in_blk[3]); p ^= l_key[48]; q ^= l_key[49]; r ^= l_key[50]; s ^= l_key[51]; p *= l_key[52]; q *= l_key[53]; r *= l_key[54]; s *= l_key[55]; bp_fun(a, b, c, d, p, q, r, s); f_fun(a, b, c, d, l_key); f_fun(c, d, a, b, l_key + 4); f_fun(a, b, c, d, l_key + 8); f_fun(c, d, a, b, l_key + 12); f_fun(a, b, c, d, l_key + 16); f_fun(c, d, a, b, l_key + 20); f_fun(a, b, c, d, l_key + 24); f_fun(c, d, a, b, l_key + 28); f_fun(a, b, c, d, l_key + 32); f_fun(c, d, a, b, l_key + 36); f_fun(a, b, c, d, l_key + 40); f_fun(c, d, a, b, l_key + 44); ibp_fun(p, q, r, s, a, b, c, d); p *= l_key[68]; q *= l_key[69]; r *= l_key[70]; s *= l_key[71]; p ^= l_key[60]; q ^= l_key[61]; r ^= l_key[62]; s ^= l_key[63]; out_blk[0] = io_swap(p); out_blk[1] = io_swap(q); out_blk[2] = io_swap(r); out_blk[3] = io_swap(s); }; void decrypt(const u4byte in_blk[4], u4byte out_blk[4]) { u4byte a,b,c,d,p,q,r,s,u,v; p = io_swap(in_blk[0]); q = io_swap(in_blk[1]); r = io_swap(in_blk[2]); s = io_swap(in_blk[3]); p ^= l_key[60]; q ^= l_key[61]; r ^= l_key[62]; s ^= l_key[63]; p *= l_key[56]; q *= l_key[57]; r *= l_key[58]; s *= l_key[59]; bp_fun(a, b, c, d, p, q, r, s); f_fun(a, b, c, d, l_key + 44); f_fun(c, d, a, b, l_key + 40); f_fun(a, b, c, d, l_key + 36); f_fun(c, d, a, b, l_key + 32); f_fun(a, b, c, d, l_key + 28); f_fun(c, d, a, b, l_key + 24); f_fun(a, b, c, d, l_key + 20); f_fun(c, d, a, b, l_key + 16); f_fun(a, b, c, d, l_key + 12); f_fun(c, d, a, b, l_key + 8); f_fun(a, b, c, d, l_key + 4); f_fun(c, d, a, b, l_key); ibp_fun(p, q, r, s, a, b, c, d); p *= l_key[64]; q *= l_key[65]; r *= l_key[66]; s *= l_key[67]; p ^= l_key[48]; q ^= l_key[49]; r ^= l_key[50]; s ^= l_key[51]; out_blk[0] = io_swap(p); out_blk[1] = io_swap(q); out_blk[2] = io_swap(r); out_blk[3] = io_swap(s); };